El Telescopio del Horizonte de Eventos (EHT por sus siglas en inglés), un arreglo a escala mundial de ocho radiotelescopios forjado a través de la colaboración internacional, obtuvo la primera imagen de un agujero negro.

En ruedas de prensa coordinadas en todo el planeta, los investigadores del EHT revelan que han tenido éxito develando la primera evidencia visual directa de un agujero negro supermasivo y su sombra.

La imagen muestra el agujero negro ubicado en el centro de Messier 87, una galaxia masiva localizada en el cercano cúmulo de galaxias de Virgo. Este agujero negro se encuentra a 55 millones de años luz de la Tierra y su masa equivale a 6.5 mil millones de veces la masa del Sol.

El EHT enlaza a telescopios alrededor del mundo para formar un telescopio virtual del tamaño de la Tierra con una sensibilidad y resolución sin precedentes.

Los agujeros negros son objetos cósmicos extremadamente compactos que contienen cantidades increíbles de masa en una región minúscula. Estos objetos afectan de maneras extremas su entorno, deformando el espacio-tiempo y sobrecalentando cualquier material a su alrededor.

«Aunque esté inmerso en una zona brillante, como un disco de gas incandescente, esperamos que un agujero negro cree una región oscura similar a una sombra, algo que predijo la relatividad general de Einstein y que nunca hemos visto», explicó el presidente del Consejo Científico del EHT Heino Falcke, de la Radboud University de Países Bajos.

«Esta sombra, ocasionada por la flexión gravitacional y la captura de luz por el horizonte de eventos, nos revela mucho acerca de la naturaleza de estos objetos fascinantes y nos permite medir la enorme masa del agujero negro de M87».

Diversos métodos de calibración y análisis de imágenes han revelado una estructura en forma de anillo con una región central oscura –la sombra del agujero negro– que persistió en observaciones, del EHT, múltiples e independientes.

Los telescopios que han contribuido a este resultado fueron ALMA, APEX, el IRAM 30-meter telescope, el James Clerk Maxwell Telescope, el Gran Telescopio Milimétrico Alfonso Serrano (GTM), el Submillimeter Array, el Submillimeter Telescope y el South Pole Telescope.

Desde Puebla, GTM capta imágenes de un agujero negro from Poblanerías en línea on Vimeo.

El análisis necesario para transformar los petabytes de datos obtenidos por dichos observatorios en la imagen final fue realizado por supercomputadoras altamente especializadas hospedadas en el Max-PlanckInstitute for Radio Astronomy y en el MIT Haystack Observatory.

«El Gran Telescopio Milimétrico, construido en el Volcán Sierra Negra en México, es uno de los telescopios que se integró más recientemente al experimento EHT. Su ubicación geográfica en la región central de la red de telescopios y el tamaño de su antena le permitieron contribuir de manera importante en la calidad de la imagen del agujero negro de M87, así como a los primeros resultados», mencionó por su parte David Hughes, Director e Investigador Principal del GTM.

El Dr. Laurent Loinard, del Instituto de Radioastronomía y Astrofísica de la UNAM, mencionó que la obtención de la imagen del agujero negro en el centro de M87 con el EHT marca un punto de inflexión para la astronomía y la física fundamental y abre una nueva era en la que se podrán estudiar agujeros negros a escalas de su horizonte de eventos.

La integración del EHT y las observaciones anunciadas este día representan la culminación de décadas de trabajo observacional, técnico y teórico. Este ejemplo de trabajo en equipo a nivel global requirió la estrecha colaboración de investigadores en todo el mundo. Trece instituciones asociadas trabajaron juntas para crear el EHT, utilizando infraestructura existente y el apoyo de una gran cantidad de agencias.

Crear el EHT fue un reto formidable que requirió mejorar y conectar una red mundial de ocho telescopios, ya existentes, ubicados en una serie de sitios cuya altitud es verdaderamente desafiante y que incluyen volcanes en Hawai y México, montañas en Arizona y en la Sierra Nevada en España, el desierto de Atacama en Chile y la Antártida.

Para realizar las observaciones del EHT se emplea una técnica denominada interferometría de base muy larga (VLBI, por sus siglas en inglés), la cual sincroniza los telescopios ubicados en distintas partes del mundo y aprovecha la rotación del planeta para formar un gigantesco telescopio del tamaño de la Tierra que puede observar a una longitud de onda de 1.3 milímetros.

 

 

 


POB/LFJ