Julio González Quintero y José Alfonso Gómez Coeto, estudiantes de Ingeniería en Ciencias de la Computación de la BUAP, integran el equipo “Sargassum Busters”, junto con siete alumnos y académicos de la UNAM, el cual desarrolló un algoritmo para detectar de manera oportuna el sargazo y darle seguimiento desde las costas de África hasta América, con lo cual ganaron el primer lugar del certamen Ocean Hackathon, en el Campus Mondial de la Mer, ubicado en Brest, Francia.

Tras este triunfo, el equipo fue invitado al All-Atlantic Ocean Research Forum, a celebrarse el 6 y 7 de febrero, en Bruselas, y donde presentarán este proyecto ganador ante otra audiencia internacional.

El nuevo algoritmo llamado Aquae Satus Invenio (ASI) formará parte del Sistema de Información y análisis MARino-costero (SIMAR), una plataforma interactiva de la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio).

Foto: BUAP

De manera previa, los universitarios ganaron la etapa nacional del Ocean Hackathon, edición Ciudad de México, realizado en Casa de Francia y organizado por el Instituto Francés en América Latina (IFAL). Se trata de una competencia de programadores o hackers que resuelven distintos problemas; en este caso, enfocados al cuidado de los océanos del mundo. Su triunfo en la etapa nacional les dio el pase a la final internacional del Ocean Hackathon.

Investigación para salvar los océanos

Desde 2015, los ecosistemas marino-costeros de México y otros países del Caribe han sido afectados severamente por la llegada masiva de sargazo pelágico. Se sabe que viaja desde África hasta el Caribe mexicano, pero aún se desconoce a qué se debe su crecimiento descontrolado.

Actualmente, su detección se realiza con un algoritmo llamado AFAI que utiliza imágenes de un satélite de la NASA, el MODIS, pero este tiende a ser impreciso, ya que alerta de su presencia cuando no existe o viceversa.

Como parte de la búsqueda de soluciones, el equipo “Sargassum Busters”, en el que participan los estudiantes de la BUAP, creó el algoritmo ASI (traducido como invento que viene desde al agua), el cual mejora la detección satelital de esta planta acuática en la superficie marina, hasta con 20 metros de resolución espacial, lo que permite detectar los objetos a mayor detalle en comparación con el satélite MODIS, en el cual cada pixel representa 2 kilómetros.

Este método se desarrolló a partir de imágenes del satélite Sentinel 2A/2B de la Agencia Espacial Europea (ESA), el cual emplea técnicas de aprendizaje supervisado o Machine Learning muy diferente a las técnicas actuales, donde se clasifican automáticamente los pixeles individuales que se identifican como sargazo.

 

 

--
POB/LFJ